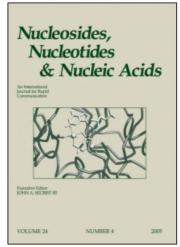
This article was downloaded by:


On: 26 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-

41 Mortimer Street, London W1T 3JH, UK

Nucleosides, Nucleotides and Nucleic Acids

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713597286

CARBOCYCLIC SUBSTRATES AND INHIBITORS FOR THE BIFUNCTIONAL LYASE OF PURINE NUCLEOTIDE BIOSYNTHESIS

Laurent Schmitt^a; Carol A. Caperelli^a

^a College of Pharmacy, University of Cincinnati Cincinnati, Ohio

To cite this Article Schmitt, Laurent and Caperelli, Carol A.(1996) 'CARBOCYCLIC SUBSTRATES AND INHIBITORS FOR THE BIFUNCTIONAL LYASE OF PURINE NUCLEOTIDE BIOSYNTHESIS', Nucleosides, Nucleotides and Nucleic Acids, 15:11,1905-1926

To link to this Article: DOI: 10.1080/07328319608002741 URL: http://dx.doi.org/10.1080/07328319608002741

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

CARBOCYCLIC SUBSTRATES AND INHIBITORS FOR THE BIFUNCTIONAL LYASE OF PURINE NUCLEOTIDE BIOSYNTHESIS

Laurent Schmitt and Carol A. Caperelli*
College of Pharmacy, University of Cincinnati, Cincinnati, Ohio 45267-0004

Abstract. The carbocyclic analogs of succinoaminoimidazole carboxamide ribonucleotide (SAICAR) and adenylosuccinate (SAMP) are substrates for the bifunctional lyase of purine biosynthesis, which catalyzes the elimination of fumarate from both SAICAR and SAMP to generate aminoimidazole carboxamide ribonucleotide (AICAR) and AMP, respectively. The glutamate analogs of both ribo- and carbo-SAICAR are inhibitors.

Adenylosuccinate lyase (ASL, EC 4.3.2.2)¹ is unique in that it catalyzes two distinct reactions in the biosynthesis of AMP. These reactions involve the elimination of fumarate, presumably *via* a β-elimination mechanism², from SAICAR to yield AICAR in *de novo* purine biosynthesis and from SAMP to yield AMP in the pathway from IMP to AMP. It appears that a single active site is responsible for both conversions². In addition to its biochemical importance, the enzyme is of interest for several clinically relevant reasons. Partial ASL deficiencies have been correlated with cases of severe mental retardation and secondary autistic features³⁻⁷. Furthermore, ASL is involved in the conversion of the anti-HIV pro-drug ddl to ddATP⁸, its active form.

As part of our continuing efforts to enzymologically evaluate carbocyclic nucleotide analogs⁹⁻¹³, we had developed enantiospecific routes to carbocyclic AICAR (C-AICAR), SAICAR (C-SAICAR), and the glutamate analog (C-GAICAR) of C-SAICAR¹⁴ (FIG. 1). In this report we present the enantiospecific syntheses of carbocyclic adenylosuccinate (C-SAMP), and AMP (C-AMP), a new and convergent synthesis of SAICAR and GAICAR, and the interactions of these compounds with yeast ASL.

AICAR: X=O, Y=NH₂ C-AICAR: X=CH₂, Y=NH₂

SAICAR: X=O, Y=NHCH(COOH)CH₂COOH
C-SAICAR: X=CH₂, Y=NHCH(COOH)CH₂COOH
GAICAR: X=O, Y=NHCH(COOH)(CH₂)₂COOH
C-GAICAR: X=CH₂, Y=NHCH(COOH)(CH₂)₂COOH

SAMP: X=O, Y=NHCH(COOH)CH2COOH C-SAMP: X=CH2, Y=NHCH(COOH)CH2COOH

AMP: X=O, Y=NH₂ C-AMP: X=CH₂, Y=NH₂

FIGURE 1

SYNTHESIS

The syntheses of SAICAR and GAICAR (SCHEME 1), which follow from our previous syntheses of C-SAICAR and C-GAICAR¹⁴, employed a key intermediate, **1**, which was obtained from condensation of 2,3-O-isopropylidene- β -D-ribofuranosylammonium tosylate¹⁵ with the formimidate derived from benzyl α -amino- α -cyanoacetate¹⁴. Acid **2**, which was obtained by hydrogenolysis of **1**, was immediately coupled¹⁶ with either dibenzyl aspartate to afford **3**, n=1, or with dibenzyl glutamate to provide **3**, n=2. Phosphorylation of both to yield **4**, n=1,2, was achieved with tetrabenzyl pyrophosphate¹⁷. Deprotection of **4**, n=1, by hydrogenolysis followed by treatment with aqueous trifluoroacetic acid, afforded SAICAR (**5**, n=1). The ¹H NMR was very similar to that reported¹⁸ for the material prepared enzymatically, indicating that only the β -anomer was formed, and a single phosphorus resonance was observed at δ 6.70. To our knowledge, this is the first reported chemical synthesis of SAICAR. GAICAR (**5**, n=2) was obtained in a similar manner. It displayed a single phosphorus resonance at δ 6.69 and its ¹H and ¹³C NMR were consistent with the proposed structure.

A number of synthetic routes to chiral carbocyclic adenosine (aristeromycin) have been developed¹⁹. Our synthesis of chiral C-AMP (10)

Reagents: **a**, i. CH₃CN, ii. Amberlite IR45, CH₃OH; **b**, H₂, 10% Pd/C, 95% EtOH; **c**, DCC, CF₃-HOBT, CH₃CN; **d**, NaH, tetrabenzyl pyrophosphate, THF; **e**, i. H₂, 10% Pd/C, 95% EtOH, ii. 80% aqueous TFA, iii. BaBr₂.

n=2: GAICAR

SCHEME 1

Reagents: **a**, Triphenylphosphine, DEAD, THF, benzene; **b**, TBAF, THF; **c**, i. O-Xylene-N,N-diethylphosphoramidite, 1H-tetrazole, THF, ii. *m*CPBA; **d**, i. NH₃(I), CH₃OH, ii. H₂, 10% Pd/C, TFA, CH₃OH, iii. BaBr₂.

SCHEME 2

(SCHEME 2) commenced with Mitsunobu coupling²⁰ of protected alcohol (–)- $6^{14,21}$ and 6-chloropurine to afford **7**. This approach was chosen because similar coupling of 5-deoxy-**6** with 6-chloropurine afforded the N-9 substituted product exclusively²² and because **7** was also required for the synthesis of C-SAMP. Selective deprotection of the primary alcohol with tetrabutylammonium fluoride in THF provided **8**. Phosphorylation of **8** was accomplished with O-xylene-N,N-diethylphosphoramidite²³, followed by *in situ* oxidation of the resulting phosphite with *m*-chloroperbenzoic acid, to yield **9**. Treatment of **9** with methanolic ammonia resulted in conversion of the chloro to the amino derivative. Hydrogenolysis, in the presence of trifluoroacetic acid, resulted in removal of the phosphate and isopropylidene protecting groups. C-AMP (**10**) was isolated as

its barium salt²⁴, with an [α]_D of -7.6 (c=0.51, H₂O) and a λ_{max} at 261 nm (ϵ =15,180 M⁻¹ cm⁻¹, pH 7.4). ¹H and ¹³C NMR were in agreement with the proposed structure and a single ³¹P resonance was observed at δ 6.97. (\pm)-C-AMP, λ_{max} 261 nm (ϵ =15,100 M⁻¹ cm⁻¹, pH 7.0), had been prepared previously²⁵, however no NMR data were presented.

The chemical synthesis of chiral carbocyclic adenylosuccinate (C-SAMP, **16**, SCHEME 3) was based on the reported²⁶ synthesis of adenylosuccinate. Thus, sulfide **11** was obtained from **7** upon treatment with 4-chlorothiophenol. Sulfoxide **12** was obtained by oxidation of **11** with *m*-chloroperbenzoic acid. Displacement of the sulfoxide with the tosylate salt of dibenzyl aspartate afforded the completely protected carbocyclic nucleoside **13**. Selective deprotection of the primary alcohol (tetrabutylammonium fluoride in THF), followed by phosphitylation-oxidation with O-xylene-N,N-diethylphosphoramidite-*m*-chloroperbenzoic acid²³, afforded protected carbocyclic nucleotide **15**. Complete deprotection of **15** to yield C-SAMP (**16**) was accomplished by hydrogenolysis in the presence of trifluoroacetic acid. C-SAMP (**16**), isolated as its barium salt, had an [α]_D of -12.6 (c=0.47, H₂O) and a λ _{max} at 270 nm (ϵ =18,160 M⁻¹ cm⁻¹, pH 7.4). ¹H and ¹³C NMR were in agreement with the proposed structure and a single ³¹P resonance, at δ 7.23, was observed.

ENZYMOLOGY

Enzymatic evaluation of the ribo- and carbo-nucleotides employed the yeast bifunctional lyase. The cleavage of SAICAR was assayed, as previously described²⁷, by monitoring the decrease in absorbance at 267 nm minus 320 nm and quantitated using a difference extinction coefficient of 0.7 mM⁻¹ cm⁻¹. Cleavage of C-SAICAR¹⁴ (λ_{max} 267, ϵ =12.4 mM⁻¹ cm⁻¹) to C-AICAR¹⁴ (λ_{max} 267, ϵ =10.6 mM⁻¹ cm⁻¹) was assayed in an analogous fashion using a difference extinction coefficient of 1.8 mM⁻¹ cm⁻¹. The conversion of SAMP to AMP was measured²⁷ at 282 nm minus 320 nm, and quantitated with $\Delta\epsilon$ =10 mM⁻¹ cm⁻¹. At 280 nm, the extinction coefficient of C-SAMP is 13.3 mM⁻¹ cm⁻¹, while that of C-AMP is 3.1 mM⁻¹ cm⁻¹. Therefore, the cleavage of C-SAMP to C-AMP was monitored at 280 nm minus 320 nm, using $\Delta\epsilon$ =10.2 mM⁻¹ cm⁻¹. Although these

Reagents: **a**, 4-Chlorothiophenol, Et₃N, CH₃OH; **b**, *m*CPBA, CH₂Cl₂; **c**, N,N-Diisopropylethylamine, DMA; **d**, TBAF, THF; **e**, i. O-Xylene-N,N-diethylphosphoramidite, 1H-tetrazole, THF, ii. *m*CPBA; **f**, i. H₂, 10% Pd/C, TFA, CH₃OH, ii. BaBr₂.

SCHEME 3

assays suffer from the disadvantage that they monitor loss of substrate rather than formation of product, they are quite reproducible. Moreover, no turnover is observed in the absence of enzyme.

C-SAICAR and C-SAMP were both processed by the yeast lyase. The kinetic constants obtained for these analogs, along with those obtained for the ribose substrates, are included in TABLE 1. The K_m's for all of these substrates were virtually identical, indicating that replacement of the ribose ring oxygen with a methylene group does not adversely affect binding affinity. V_{max}, on the other hand, was significantly affected by this substitution. The V_{max} with C-SAICAR was only approximately 20% of that with SAICAR, while C-SAMP was processed at approximately 30% of the V_{max} obtained with SAMP. Although the site of modification is remote from the substrate cleavage site, its influence on catalytic efficiency is still felt. The diminution in catalytic efficiency observed with the carbocyclic substrates may be due to steric and/or electronic effects. A slight difference in ring conformation resulting from the substitution of methylene for oxygen could perturb the enzyme-substrate interactions optimal for cleavage. It seems less likely that the electronic differences between oxygen and methylene would be transmitted over such a distance.

As expected, neither of the glutamate analogs (GAICAR, C-GAICAR) served as substrates for the lyase. Both, however, were inhibitors of each reaction, competitive against SAICAR and SAMP, respectively, with Ki's less than an order of magnitude higher than the substrate Km's (TABLE 1). The inhibition constants for GAICAR *versus* SAICAR and SAMP are identical, while those for C-GAICAR show some variation. The value obtained against SAMP is probably the more reliable, given the sensitivity limitations of the SAICAR lyase assay. The inhibition results are consistent with the postulate that a single active site catalyzes both cleavage reactions². For both reactions, the carbocyclic analog was a slightly better inhibitor.

Experimental Section

General

NMR spectra were recorded on a Bruker AC-300 spectrometer. UV spectra were obtained with a Cary 3 spectrophotometer. Optical rotations were

TABLE 1
SAICAR/SAMP LYASE ACTIVITY

Compound	$K_m(\mu M)$	V_{max}	V/K (rel)	<u>Κ</u> , (μ Μ)
		(µmol/min-mg)		
SAICAR	11 ± 2	0.500 ± 0.020	100	
C-SAICAR	12 ± 3	0.107 ± 0.007	19.6	
GAICAR ^a				99 ± 21
C-GAICAR ^a				53 ± 8
SAMP	12 ± 1	0.280 ± 0.010	100	
C-SAMP	14 ± 1	0.086 ± 0.003	26.3	
GAICAR ^b				99 ± 7
C-GAICAR ^b				83 ± 10

^aVersus SAICAR as varied substrate.

measured, using a Rudolph Autopol III polarimeter, at the sodium D line in a 10 cm pathlength cell at 25 °C and concentrations are reported in g/100 mL. Phosphate assays²⁸ were employed to obtain an independent analysis of the concentrations of nucleotide solutions used for determination of extinction coefficients. TLC was performed with either silica gel plates (Eastman 13181) or, for the phosphomonoesters, cellulose plates (Eastman 13254). Column chromatographic purifications utilized silica gel 60 (70-230 mesh). Solvents were reagent grade and were dried by standard methods²⁹. Reactions were run under anhydrous conditions under nitrogen, unless otherwise noted. Adenylosuccinate, yeast adenylosuccinate lyase, and bovine serum albumin were purchased from Sigma and used without further purification.

Enzyme Assays

All assays were performed at 25 °C in 20 mM potassium phosphate, pH 7.4. The lyase was dissolved in 20 mM potassium phosphate, pH 7.4-0.2 mg/mL

bVersus SAMP as varied substrate.

BSA. Reaction components were incubated at 25 °C for 5 min, and the reaction was initiated by the addition of a small volume of enzyme to a final volume of 1 mL. Initial velocity data were analyzed³⁰ according to Equation 1 for determination of the kinetic constants and according to Equations 2 and 3 for competitive and non-competitive inhibition, respectively.

$$v = VS/[K_m + S]$$
 (1)

$$v = VS/[K_m(1 + I/K_{is}) + S]$$
 (2)

$$v = VS/[K_m(1 + I/K_{is}) + S(1 + I/K_{ii})]$$
 (3)

5-Amino-1-(2',3'-O-isopropylidene-β-D-ribofuranosyl) imidazole-4**benzyl carboxylate (1).** A freshly prepared ¹⁴ solution of benzyl α -amino- α cyanoacetate (2.12 g, 11.1 mmol) and triethyl orthoformate (7.4 mL, 44.4 mmol) in CH₃CN (40 mL) was refluxed for 1 h. The solvent was evaporated and the residue was dried in vacuo. The residue was dissolved in CH₃CN (40 mL), the solution was cooled to 0 °C, and solid ribofuranosylammonium tosylate (2 g, 5.53 mmol) was added. The resulting solution was stirred at room temperature for 14 h. Evaporation of solvent left a residue which was purified on silica gel $(CH_3OH \text{ in } CH_2Cl_2, 0.5 \rightarrow 3\%)$ to afford 1.29 g (2.29 mmol, 41.5%) of **1** as the tosylate salt. The free amine (0.839 g, 2.15 mmol, 39%) was obtained after ion exchange with Amberlite IR45 in CH₃OH: TLC (silica, CH₂Cl₂-CH₃OH, 95:5) R_f 0.44; $[\alpha]_D$ -66.3 (c=0.86, CH₃OH); 1H NMR (CDCl₃, TMS) δ 7.40-7.20 (m, 5H, Ph), 7.14 (s, 1H, H-2), 5.84 (bs, 2H, N_{H_2}), 5.54 (d, J=3.0 Hz, 1H, H-1'), 5.38 (s, 2H, C_{H_2} Ph), 4.96 (dd, J=9.5 Hz, J=6.7 Hz, 2H, H-2', H-3'), 4.25 (d, J=1.3 Hz, 1H, H-4'), 3.78 (ABX, $\Delta\delta$ =0.10 ppm, J_{AB}=11.9 Hz, J_{AX}=2.2 Hz, J_{BX}=1.5 Hz, 2H, H-5'), 1.57 (s, 3H, $C(CH_3)_2$), 1.33 (s, 3H, $C(CH_3)_2$); ¹³C NMR (CDCl₃) δ 164.0 (C-6), 145.6 (C-5), 136.4 (Ph), 130.2 (C-2), 128.1 (Ph), 128.0 (Ph), 124.4 (Ph), 114.5 (C-4), 111.0 $(\underline{C}(CH_3)_2)$, 92.2 (C-1'), 85.3 (C-2'), 82.5 (C-3'), 80.6 (C-4'), 65.4 $(\underline{C}H_2Ph)$, 61.3 (C-5'), 27.2 $(C(\underline{C}H_3)_2)$.

5-Amino-1-(2',3'-O-isopropylidene-β-p-ribofuranosyl) imidazole-4dibenzyl aspartyl carboxamide (3, n=1). A solution of 1 (86 mg, 0.22 mmol) in

CH₃OH (2 mL)-95% ethanol (2 mL) was hydrogenated (1 atm.) over 10% Pd/C (20 mg) at room temperature for 16 h. The suspension was filtered through Celite. Solvent was evaporated and the residue was dried in vacuo. CF₃-HOBT (59 mg, 0.287 mmol) and CH₃CN (1 mL) were added to the residue, followed by a solution of dibenzyl aspartate (140 mg, 0.45 mmol) in CH₃CN (1 mL) and solid DCC (92 mg, 0.442 mmol). The suspension was stirred at room temperature for 21 h. The suspension was filtered and solvent was evaporated to leave a residue which was purified on silica gel (CH₃OH in CH₂Cl₂, 1→3%) to provide 3, n=1 (47 mg, 0.079 mmol, 36%) as an oil: TLC (silica, $CH_2Cl_2-CH_3OH$, 97:3) R_f 0.33; $[\alpha]_D$ -25.0 (c=0.54, CHCl₃); ¹H NMR (CDCl₃, TMS) δ 7.47 (d, J=8.6 Hz, 1 H, NH), 7.30-7.10 (m, 10 H, Ph), 7.02 (s, 1 H, H-2), 5.74 (s, 2 H, NH₂), 5.57 (d, J=3.6 Hz, 1 H, H-1'), 5.13 (s, 2 H, CH_2Ph), 5.10-4.90 (m, 5 H, CH_2Ph , H- α , H-2', H-3'), 4.23 (d, J=2.3 Hz, 1 H, H-4'), 3.84 (ABX, $\Delta\delta$ =0.08 ppm, J_{AB}=11.8 Hz, J_{AX} =1.9 Hz, J_{BX} =1.4 Hz, 2 H, H-5'), 3.00 (ABX, $\Delta\delta$ =0.14 ppm, J_{AB} =16.8 Hz, J_{AX} =5.3 Hz, J_{BX} =5.3 Hz, 2 H, H- β), 2.10-1.90 (bs, 1 H, OH), 1.58 (s, 3 H, $C(CH_3)_2$), 1.33 (s, 3 H, $C(CH_3)_2$); ¹³C NMR (CDCl₃) δ 170.8 (α - CO_2), 170.4 (β -CO₂), 164.7 (C-6), 143.1 (C-5), 135.5 (Ph), 135.4 (Ph), 129.2 (C-2), 128.5 (Ph), 128.3 (Ph), 128.1 (Ph), 114.7 (C-4), 113.9 (C(CH₃)₂), 92.1 (C-1'), 85.1 (C-2'), 82.6 (C-3'), 80.3 (C-4'), 67.3 ($\underline{C}H_2Ph$), 66.8 ($\underline{C}H_2Ph$), 61.6 (C-5'), 48.2 (C- α), 37.0 (C- β), 27.3 (C(CH₃)₂), 25.2 (C(CH₃)₂).

5-Amino-1-(2',3'-O-isopropylidene-4'-dibenzyl phosphoroxymethyl-β-p-ribofuranosyl) imidazole-4-dibenzyl aspartyl carboxamide (4, n=1). To a cold (0 °C), stirred solution of 3 (39 mg, 0.066 mmol) and tetrabenzyl pyrophosphate (42.4 mg, 0.079 mmol) in THF (2 mL), was added NaH (3 mg, 0.072 mmol). Stirring was continued for 1.5 h at 0 °C and 2 h at 25 °C. The solution was cooled to 0 °C, NaH (1 mg, 0.024 mmol) was added, and stirring was continued for 30 min at 0 °C. H₂O (1 drop) was added, solvent was evaporated, and the residue was purified on silica gel (CH₃OH in CH₂Cl₂, 0 \rightarrow 3%) to afford 4, n=1 (40 mg, 0.047 mmol, 71%) as an oil: TLC (silica, CH₂Cl₂-CH₃OH, 97:3) R_f 0.38; [α]_D –16.7 (c=0.43, CHCl₃); ¹H NMR (CDCl₃, TMS) δ 7.48 (d, J=8.7 Hz, NH), 7.40-7.20 (m, 20 H, Ph), 5.49 (d, J=3.9 Hz, 1 H,

H-1'), 5.15-4.95 (m, 11 H, CH₂Ph, NH₂, H-α), 4.76 (dd, J=6.8 Hz, J=4.4 Hz, 1 H, H-3'), 4.68 (dd, J=6.6 Hz, J=3.3 Hz, 1 H, H-2'), 4.20 (m, 1 H, H-4'), 4.15-4.05 (m, 2 H, H-5'), 3.02 (ABX, $\Delta\delta$ =0.17 ppm, J_{AB}=16.7 Hz, J_{AX}=5.1 Hz, J_{BX}=5.1 Hz, 2 H, H-β), 1.59 (s, 3 H, C(CH₃)₂), 1.30 (s, 3 H, C(CH₃)₂); ¹³C NMR (CDCl₃) δ 170.8 (α-CO₂), 170.4 (β-CO₂), 164.4 (C-6), 142.3 (C-5), 135.5-135.4 (4 Ph), 128.8(C-2), 128.7-127.8 (20 Ph), 115.4 (C-4), 115.0 (C(CH₃)₂), 91.2 (C-1'), 82.8 (C-4'), 79.7 (C-3'), 76.6 (C-2'), 69.8 (C-5'), 67.2 (CO₂CH₂Ph), 66.7 (CO₂CH₂Ph), 66.0 (2 PO₃CH₂Ph), 48.0 (C-α), 37.0 (C-β), 27.1 (C(CH₃)₂), 25.2 (C(CH₃)₂); ³¹P NMR (CDCl₃, H₃PO₄ (ext.)) δ 0.16.

SAICAR (5, n=1). A solution of **4, n=1** (27 mg, 0.032 mmol) in 80% aqueous alcohol (10 mL), containing TFA (3 drops) and ethylene glycol (1 drop), was hydrogenated (1 atm.) over 10% Pd/C (20 mg) for 16 h. The suspension was filtered through Celite and solvent was evaporated. The residue was dissolved in H₂O (2 mL) and TFA (1 mL) and the resulting solution was stirred at 25 °C for 24 h. After evaporation of solvent, the residue was dissolved in H₂O (0.9 mL), treated with 1 M BaBr₂ (0.16 mL, 0.16 mmol), and the pH was adjusted to pH 9. The resulting suspension was kept at 4 °C for 1 h, and the precipitate that formed was removed by centrifugation. Absolute ethanol (5 mL) was added to the supernatant and the suspension that resulted was kept at -20 °C for 30 min. The precipitate was collected by centrifugation, washed with ethanol and ether, and dried in vacuo to provide 5, n=1 (19.4 mg, 0.027 mmol, 84%) as a white powder: TLC (cellulose, EtOH-H₂O-HOAc, 7:3:1) R₇0.53; UV (20 mM, potassium phosphate, pH 7.4) λ_{max} 267 nm (ϵ =13.3 mM⁻¹ cm⁻¹); ¹H NMR (D₂O, HOD) δ 7.54 (s, 1 H, H-2), 5.69 (d, J=7.0 Hz, 1 H, H-1'), 4.72 (dd, J=7.1 Hz, J=5.6 Hz, 1 H, H-2'), 4.61 (dd, J=8.5 Hz, J=4.5 Hz, 1 H, H- α), 4.55-4.45 (m, 1 H, H-3'), 4.33 (m, 1 H, H-4'), 4.0 (m, 2 H, H-5'), 2.72 (ABX, $\Delta\delta$ =0.10 ppm, J_{AB} =15.6 Hz, J_{AX} =4.6 Hz, J_{BX} =8.3 Hz), 2 H, H- β); ¹³C NMR (D₂O, EtOH (ext.)) δ 179.9 (α - CO_2), 179.5 (β - CO_2), 165.9 (C-6), 143.5 (C-5), 132.1 (C-2), 123.2 (C-4), 88.8 (C-1'), 85.5 (C-4'), 72.9 (C-3'), 71.2 (C-2'), 64.1 (C-5'), 52.7 $(C-\alpha)$, 40.8 $(C-\beta)$; ³¹P NMR (D₂O, 85% H₃PO₄ (ext.)) δ 6.7; MS (ion spray) MH⁺ 726.6, caicd. for C₁₃H₁₅N₄O₁₂PBa₂, M 724.9.

5-Amino-1-(2',3'-O-isopropylidene-β-p-ribofuranosyl) imidazole-4dibenzyl glutamyl carboxamide (3, n=2). A solution of 1 (300 mg, 0.77 mmol) in 1:1 CH₃OH-EtOH (10 mL) was hydrogenated (1 atm.) over 10% Pd/C (50 mg) for 28 h. The mixture was filtered through Celite, solvent was evaporated, and the residue was dried in vacuo. CF₃-HOBT (172 mg, 0.847 mmol) and CH₃CN (3 mL) were added to the residue, followed by a solution of dibenzyl glutamate (466 mg, 1.424 mmol) in CH₃CN (3 mL) and solid DCC (482 mg, 2.3 mmol). The suspension was stirred at 25 °C for 25 h. The mixture was filtered, solvent evaporated, and the residue was purified on silica gel (CH₃OH in CH₂Cl₂. 0.25→3%) to provide **3, n=2** (203 mg, 0.333 mmol, 43%) as an oil: TLC (silica, $CH_2CI_2-CH_3OH$, 95:5) $R_10.54$; [α]_D -22.9 (c=0.85, CHCI₃); ¹H NMR (CDCI₃, TMS) δ 7.40-7.20 (m, 10 H, Ph), 7.12 (d, J=8.6 Hz, 1 H, NH), 7.03 (s, 1 H, H-2), 5.63 (s, 2 H, $N\underline{H}_2$), 5.59 (d, J=3.5 Hz, 1 H, H-1'), 5.20-5.00 (m, 7 H, $C\underline{H}_2$ Ph, H-2', H-3', H- α), 4.24 (m, 1 H, H-4'), 3.88 (ABX, $\Delta\delta$ =0.09 ppm, J_{AB}=11.7 HZ, J_{AX}=2.2 HZ, J_{BX}=1.8 HZ, 2 H, H-5'), 2.60-1.60 (m, 5 H, OH, H-β, H-γ), 1.58 (s, 3 H, $C(CH_3)_2$, 1.37 (s, 3 H, $C(CH_3)_2$); ¹³C NMR (CDCl₃) δ 172.4 (α -CO₂), 171.7 (β -CO₂), 164.9 (C-6), 142.8 (C-5), 135.5 (Ph), 128.8 (C-2), 128.7-128.2 (Ph), 114.9 (C-4), 114.4 (<u>C</u>(CH₃)₂), 91.9 (C-1'), 85.1 (C-2'), 82.8 (C-3'), 80.2 (C-4'), 66.8 $(\underline{C}H_2Ph)$, 64.4 $(\underline{C}H_2Ph)$, 61.7 (C-5'), 50.9 $(C-\alpha)$, 30.4 $(C-\gamma)$, 27.8 $(C-\beta)$, 27.3 $(C(CH_3)_2)$, 24.8 $(C(CH_3)_2)$.

5-Amino-1-(2',3'-O-isopropylidene-4'-dibenzyl phosphoroxymethyl-β-D-ribofuranosyl) imidazole-4-dibenzyl glutamyl carboxamide (4, n=2). To a cold (0 °C) solution of 3, n=2 (161 mg. 0.264 mmol) and tetrabenzyl pyrophosphate (185 mg, 0.344 mmol) in THF (8 mL), was added NaH (12.7 mg, 0.53 mmol). The mixture was stirred for 3h at 4 °C, NaH (3 mg, 0.125 mmol) was added, and stirring was continued for 45 min at 0 °C. H₂O (2 drops) was added and solvent was evaporated to yield a residue which was purified on silica gel (CH₃OH in CH₂Cl₂, 0→3%) to afford 4, n=2 (118 mg, 0.136 mmol, 51%) as an oil: TLC (silica, CH₂Cl₂-CH₃OH, 98.5:1.5) R_f 0.26; [α]_D –25.8 (c=0.83, CHCl₃); ¹H NMR (CDCl₃, TMS) δ 7.40-7.25 (m, 20 H, Ph), 7.11 (d, J=8.6 Hz, N<u>H</u>), 7.03 (s, 1 H, H-2), 5.48 (d, J=3.9 Hz, 1 H, H-1'), 5.17 (s, 2 H, CO₂CH₂Ph), 5.10 (s, 2 H,

N<u>H</u>₂), 5.08 (s, 2 H, CO₂C<u>H</u>₂Ph), 5.05-4.90 (m, 4 H, PO₃C<u>H</u>₂Ph), 4.90-4.75 (m, 2 H, H-2', H- α), 4.67 (dd, J=6.7 Hz, J=3.4 Hz, 1 H, H-3'), 4.20-4.15 (m, 1 H, H-4'), 4.15-4.05 (m, 2 H, H-5'), 2.50-2.45 (m, 2 H, H- γ), 2.45-2.25 (m, 1 H, H- β), 2.15-2.00 (m, 1 H, H- β), 1.55 (s, 3 H, C(C<u>H</u>₃)₂), 1.30 (s, 3 H, C(C<u>H</u>₃)₂); ¹³C NMR (CDCl₃) δ 172.4 (α -CO₂), 171.8 (β -CO₂), 164.5 (C-6), 142.2 (C-5), 135.9 (Ph), 135.5 (Ph), 128.8 (C-2), 128.7-128.1 (Ph), 115.4 (C-4), 115.1 (<u>C</u>(CH₃)₂), 91.2 (C-1'), 82.8 (C-4'), 79.7 (C-3'), 77.4 (C-2'), 69.8 (C-5'), 67.0 (CO₂CH₂Ph), 66.4 (CO₂CH₂Ph), 66.0 (PO₃CH₂Ph), 65.9 (PO₃CH₂Ph), 50.8 (C- α), 30.4 (C- γ), 27.9 (C- β), 27.1 (C(CH₃)₂), 25.2 (C(CH₃)₂); ³¹P NMR (CDCl₃, H₃PO₄ (ext.)) δ 0.16.

GAICAR (5, n=2). A solution of **4, n=2** (100 mg, 0.115 mmol) in 70% ethanol (9.5 mL) containing TFA (3 drops) was hydrogenated (1 atm.) over 10% Pd/C (40 mg) for 19 h. The mixture was filtered through Celite and solvent was evaporated. The residue was dissolved in H₂O (3 mL) and TFA (1.5 mL) and this solution was stirred at 25 °C for 24 h. Solvent was evaporated, the residue was dissolved in H₂O (3 mL), 1 M Ba Br₂ (0.46 mL, 0.46 mmol) was added, and the pH was adjusted to pH 9. The suspension was kept at 4 °C for 1 h and the precipitate was removed by centrifugation. Absolute ethanol (15 mL) was added to the supernatant and precipitated product was collected by centrifugation after 30 min at -20 °C. The precipitate was washed with ethanol and ether and dried in vacuo to provide 5, n=2 (69.5 mg, 0.094 mmol, 82%) as a white powder: TLC (cellulose, EtOH-H₂O-HOAc, 7:3:1) R_f 0.62; [α]_D -14.7 (c=0.55, H₂O); UV (20 mM potassium phosphate, pH 7.4) λ_{max} 270 nm (ϵ =13.3 mM⁻¹ cm⁻¹); ¹H NMR $(D_2O, HOD) \delta 7.54$ (s, 1 H, H-2), 5.70 (d, J=7.1 Hz, H-1'), 4.72 (dd, J=6.8 Hz, J=5.9 Hz, H-2'), 4.46 (m, 1 H, H- α), 4.33 (m, 1 H, H-3'), 4.10-3.90 (m, 3 H, H-4', H-5'), 2.40-2.00 (m, 4 H, H-γ, H-β); 13 C NMR (D₂O, EtOH (ext.)) δ 183.0 (α-CO₂⁻¹), 180.0 (γ-<u>C</u>O₂⁻), 166.1 (C-6), 143.5 (C-5), 132.1 (C-2), 88.8 (C-1'), 85.6 (C-4'), 72.9 (C-3'), 71.2 (C-2'), 62.4 (C-5'), 55.0 (C- α), 34.6 (C- γ), 29.5 (C- β); ³¹P NMR $(D_2O, 85\% H_3PO_4 (ext.)) \delta 6.69$; MS (ion spray) MH⁺ 740.7, calcd. for C₁₄H₁₇N₄O₁₂PBa₂, M 738.9.

6-Chloro-9-[2',3'-O-isopropylidene-4'-(tert-butyldimethylsilyloxy-methyl)cyclopentyl)]-9H-purine (7). To a cold (0 °C), stirred solution of (-)-6

(1g, 3.3 mmol), triphenylphosphine (2.62 g, 9.9 mmol), and 6-chloropurine (1 g, 6.6 mmol) in THF (10 mL) and benzene (5 mL), was added DEAD (1.57 mL, 1.74 g, 9.9 mmol). Stirred at 0 °C for 2h, followed by 8 h at reflux. Evaporation of solvent left a residue which was purified on silica gel (EtOAc in hexanes, $0\rightarrow30\%$) to yield **7** (1.132 g, 2.6 mmol, 78%) as an oil: TLC (silica, etherhexanes, 2:1) R_f 0.36; $[\alpha]_D$ –21.1 (c=1.1, CHCl₃); ¹H NMR (CDCl₃, TMS) δ 8.69 (s, 1 H, H-2), 8.15 (s, 1 H, H-8), 4.97 (t, J=6.5 Hz, 1 H, H-2'), 4.84-4.81 (m, 1 H, H-1'), 4.65 (dd, J=7.0 Hz, J=4.2 Hz, 1 H, H-3'), 4.23 (dd, J=9.0 Hz, J=3.0 Hz, 2 H, H-5'), 2.58-2.49 (m, 2 H, H-4', H-6'), 2.43-2.37 (m, 1 H, H-6'), 1.54 (s, 3 H, C(CH₃)₂), 1.33 (s, 3 H, C(CH₃)₂), 0.89 (s, 9 H, SiC(CH₃)₃), 0.05 (s, 6 H, Si(CH₃)₂); ¹³C NMR (CDCl₃) δ 151.8 (C-4), 151.7 (C-2), 151.2 (C-6), 144.3 (C-8), 132.3 (C-5), 113.3 (C(CH₃)₂), 83.7 (C-2'), 80.7 (C-3'), 62.7 (2 C, C-1', C-5'), 45.5 (C-4'), 32.9 (C-6'), 27.6 (C(CH₃)₂), 25.8 (SiC(CH₃)₃), 25.1 (C(CH₃)₂), 18.2 (SiC(CH₃)₃), -5.5 (Si(CH₃)₂).

6-Chloro-9-(2',3'-O-isopropylidene-4'-hydroxymethylcyclopentyl)-9H-purine (8). To a stirred solution of **7** (0.15 g, 0.34 mmol) in THF (5 mL) was added 1 M TBAF in THF (0.43 mL, 0.43 mmol) and stirring was continued for 2 h at 25 °C. Solvent was evaporated to leave an oil which was purified on silica gel (CH₃OH in CH₂Cl₂, 0→3%) to afford **8** (0.094 g, 0.29 mmol, 85%) as a clear oil: TLC (silica, ether) R_f 0.17; [α]_D -49.1 (c=0.9, CHCl₃); ¹H NMR (CDCl₃, TMS) δ 8.74 (s, 1 H, H-2), 8.28 (s, 1 H, H-8), 5.03 (dd, J=6.6 Hz, J=6.0 Hz, 1 H, H-2'), 4.93-4.87 (m, 1 H, H-1'), 4.74 (dd, J=6.9 Hz, J=3.4 Hz, 1 H, H-3'), 3.90-3.80 (m, 2 H, H-5'), 3.01 (bs, 1 H, OH), 2.60-2.45 (m, 3 H, H-4', 2 H-6'), 1.58 (s, 3 H, C(CH₃)₂, 1.32 (s, 3 H, C(CH₃)₂; ¹³C NMR (CDCl₃) δ 151.7 (C-4), 151.3 (C-2), 151.1 (C-6), 144.6 (C-8), 132.4 (C-5), 113.8 (C(CH₃)₂), 84.0 (C-2'), 81.8 (C-3'), 63.5 (C-5'), 63.0 (C-1'), 45.5 (C-4'), 33.0 (C-6'), 27.5 (C(CH₃)₂), 25.1 (C(CH₃)₂).

6-Chloro-9-[2',3'-O-isopropylidene-4'-(o-xylylphosphoroxymethyl)-cyclopentyl]-9H-purine (9). To a stirred solution of 8 (50 mg, 0.154 mmol) in THF (5 mL) was added 1H-tetrazole (20 mg, 0.286 mmol) and O-xylene-N,N-diethylphosphoramidite (55 mg, 0.231 mmol). After 10 h at 25 °C, the reaction was cooled to 0 °C, mCPBA (55%, 97 mg, 0.31 mmol) was added, and stirring

was continued for 8 h at 25 °C. Solvent was evaporated, the residue was dissolved in ethyl acetate (10 mL), and this solution was washed with 10% Na₂S₂O₅ (10 mL), saturated NaHCO₃ (10 mL), H₂O (10 mL), and saturated NaCl (10 mL). After drying (Na₂SO₄), solvent was evaporated to leave an oil which was purified on silica gel (CH₃OH in CH₂Cl₂, 0→2%) to afford **9** (70 mg, 0.138 mmol, 89%) as a clear oil: TLC (silica, CH₂Cl₂-CH₃OH, 19:1) R_7 0.55; [α]_D –15.0 (c=0.01, CHCl₃); ¹H NMR (CDCl₃, TMS) δ 8.66 (s, 1 H, H-8), 8.24 (s, 1 H, H-2), 7.4-7.3 (m, 4 H, Ph), 5.28 (d, J=3.9 Hz, 2 H, CH₂Ph), 5.23 (d, J=3.9 Hz, 2 H, CH₂Ph), 5.12 (dd, J=7.0 Hz, J=6.0 Hz, 1 H, H-2'), 5.0-4.85 (m, 1 H, H-1'), 4.77 (dd, J=7.1 Hz, J=4.7 Hz, 1 H, H-3'), 4.37 (t, J=5.8 Hz, 2 H, H-5'), 2.65-2.55 (m, 3 H, H-4', H-6'), 1.57 (s, 3 H, C(CH₃)₂), 1.31 (s, 3 H, C(CH₃)₂); ¹³C NMR (CDCl₃) δ 151.6 (C-4), 151.2 (C-2), 151.1 (C-6), 144.5 (C-8), 135.1 (Ph), 132.3 (C-5), 129.5 (Ph), 128.9 (Ph), 114.2 (C(CH₃)₂), 83.2 (C-2'), 80.5 (C-3'), 68.5 (2 C, CH₂Ph), 68.1 (C-5'), 62.2 (C-1'), 44.0 (C-4'), 33.0 (C-6'), 27.4 (C(CH₃)₂), 25.0 (C(CH₃)₂); ³¹P NMR (CDCl₃, 85% H₃PO₄ (ext.)) δ –0.26.

C-AMP (10). A solution of 9 (0.3 g, 0.59 mmol) in CH₃OH (2 mL) in a bomb was cooled in dry ice and liquid ammonia (~ 5 mL) was added. The bomb was sealed and then heated at 60 °C for 24 h. After cooling (dry ice), the bomb was opened and the ammonia was allowed to evaporate. Solvent was evaporated, the residue was dissolved in CH₃OH (10 mL) and TFA (8 drops), and the solution was hydrogenated (1 atm.) over 10% Pd/C (30 mg) for 18 h. The mixture was filtered through Celite and evaporated. The residue was dissolved in H₂O (1.5 mL), 1 M BaBr₂ (1.18 mL, 1.18 mmol) was added, and the pH was adjusted to pH 8.5. Absolute ethanol (13.5 mL) was added and the resulting suspension was kept at -20 °C for 10 h. The precipitate was collected by centrifugation, washed with ethanol and ether, and dried in vacuo to afford 10 (0.21 g, 0.43 mmol, 74%) as a powder: TLC (cellulose, EtOH-H₂O-HOAc, 7:3:1) R_1 0.27; $[\alpha]_D - 7.6$ (c=0.51, H_2 0); ¹H NMR (D₂0, HOD) δ 8.44 (s, 1 H, H-2), 8.27 (s, 1 H, H-8), 4.56 (dd, J=9.4 Hz, J=5.5 Hz, 1 H, H-1'), 4.23 (dd, J=5.5 Hz, J=3.1 Hz. 1 H, H-3'), 4.0-3.8 (m, 2 H, H-5'), 2.6-2.5 (m, 1 H, H-6'), 2.5-2.35 (m, 1 H, H-4'), 2.0-1.85 (m, 1 H, H-6'); H-2' obscured by HOD; ¹³C NMR (D₂O, pH 1, EtOH

(ext.)) δ 149.2 (C-6), 148.6 (C-4), 143.5 (C-2), 143.0 (C-8), 118.0 (C-5), 74.9 (C-2'), 71.2 (C-3'), 66.6 (C-5'), 57.0 (C-1'), 42.7 (C-4'), 27.7 (C-6'); ³¹P NMR (D₂O, 85% H₃PO₄ (ext.)) δ 6.97; MS (ion spray) MH⁺ 481.8, calcd. for C₁₁H₁₄N₅O₆PBa, M 480.6.

6-(4-Chlorophenylthio)-9-[2',3'-O-isopropylidene-4'-(tert-butyldimethylsilyloxymethyl)cyclopentyl]-9H-purine (11). To a stirred solution of 7 (0.4 g, 0.91 mmol) in CH₃OH (10 mL), was added triethylamine (0.18 mL, 1.29 mmol) and 4-chlorothiophenol (0.182 g, 1.26 mmol) and stirring was continued for 1 h at 25 °C. Solvent was evaporated to leave an oil that was dissolved in CHCl₃ (40 mL). The CHCl₃ solution was washed with saturated NaHCO₃ (15 mL), dried over Na₂SO₄, and evaporated to leave an oil which was purified on silica gel (CHCl₃) to afford **11** (0.428 g, 0.78 mmol, 86%) as a colorless oil: TLC (silica, ether-hexanes, 2:1) R_f 0.44; $[\alpha]_D$ -11.3 (c=0.4, CHCl₃); ¹H NMR (CDCl₃, TMS) δ 8.60 (s, 1 H, H-2), 8.07 (s, 1 H, H-8), 7.58 (d, J=9.0 Hz, 2 H, Ph), 7.43 (d, J=9.0 Hz, 2 H, Ph), 5.01 (dd, J=6.7 Hz, J=6.1 Hz, 1 H, H-2'), 4.9-4.8 (m, 1 H, H-1'), 4.67 (dd, J=7.0 Hz, J=4.3 Hz, 1 H, H-3'), 3.80-3.70 (m, 2 H, H-5'), 2.6-2.5 (m, 1 H, H-6'), 2.41-2.29 (m, 2 H, H-4', H-6'), 1.53 (s, 3 H, C(CH)₃)₂), 1.36 (s, 3 H, $C(CH_3)_2$, 0.91 (s, 9 H, SiC(CH₃)₃), 0.07 (s, 3 H, SiC(CH₃)₂), 0.05 (s, 3 H, $SiC(CH_3)_2$; ¹³C NMR (CDCl₃) δ 159.8 (C-6), 151.7 (C-4), 148.9 (C-2), 142.3 (S-Ph), 136.6 (C-8), 135.6 (Cl-Ph), 131.3 (2 C, Ph), 129.3 (2 C, Ph), 125.7 (C-5), 113.3 ($\underline{C}(CH_3)_2$), 83.5 (C-2'), 80.5 (C-3'), 62.5 (C-5'), 62.1 (C-1'), 45.4 (C-4'), 33.0 (C-6'), 27.4 (C($\underline{C}H_3$)₂), 25.7 (3 C, SiC($\underline{C}H_3$)₃), 25.0 (C($\underline{C}H_3$)₂), 18.1 $(\underline{C}(CH_3)_3)$, -5.6 (2 C, Si($\underline{C}H_3$)₂).

6-(4-Chlorophenylsulfinyl)-9-[2',3'-O-isopropylidene-4'-(*tert***-butyl-dimethylsilyloxymethyl)cyclopentyl]-9H-purine (12).** A solution of mCPBA (55%, 0.151 g, 0.48 mmol) in CH₂Cl₂ (5 mL) was added dropwise to a cold (-5 °C), stirred solution of **11** (0.25 g, 0.45 mmol) in CH₂Cl₂ (10 mL). After 3 h at -5 °C, the solution was extracted with 10% Na₂S₂O₅ (5 mL), saturated NaHCO₃ (5mL), H₂O (5 mL), and saturated NaCl (5 mL). After drying (Na₂SO₄), solvent was evaporated to leave an oil which was purified on silica gel (1% EtOH in CH₂Cl₂) to afford **12** (0.2 g, 0.35 mmol, 78%) as a clear oil: TLC (silica, CH₂Cl₂-

CH₃OH, 95:5) R_7 0.50; [α]_D –22.1 (c=0.095, CHCl₃); ¹H NMR (CDCl₃, TMS) δ 9.08 (s, 1 H, H-2), 8.24 (s, 1 H, H-8), 7.95 (d, J=9.5 Hz, 2 H, Ph), 7.43 (d, J=9.5 Hz, 2 H, Ph), 5.05-4.9 (m, 1 H, H-2'), 4.9-4.8 (m, 1 H, H-1'), 4.7-4.6 (m, 1 H, H-3'), 3.77 (ABX, $\Delta\delta$ =0.07 ppm, J_{AB} =10.2 Hz, J_{AX} =4.4 Hz, J_{BX} =3.5 Hz, 2 H, H-5'), 2.7-2.5 (m, 1 H, H-6'), 2.45-2.35 (m, 2 H, H-4', H-6'), 1.56 (s, 3 H, C(CH₃)₂), 1.30 (s, 3 H, C(CH₃)₂), 0.89 (s, 9 H, SiC(CH₃)₃), 0.08 (s, 3 H, SiC(CH₃)₂), 0.03 (s, 3 H, SiC(CH₃)₂); ¹³C NMR (CDCl₃) δ 161.9 (C-6), 152.2 (C-4), 145.6 (C-2), 145.4 (C-8), 141.1 (SO-Ph), 137.7 (CI-Ph), 129.5 (2 C, Ph), 126.5 (3 C, Ph, C-5), 113.7 (C(CH₃)₂), 83.7 (C-2'), 80.6 (C-3'), 62.7 (C-5'), 62.5 (C-1'), 45.3 (C-4'), 32.8 (C-6'), 27.5 (C(CH₃)₂), 25.8 (3 C, SiC(CH₃)₃), 25.1 (C(CH₃)₂), 18.2 (SiC(CH₃)₃), -5.5 (2 C, Si(CH₃)₂).

Dibenzyl-N-[9-(2',3'-O-isopropylidene-4'-(tert-butyldimethylsilyloxymethyl)cyclopentyl)-9H-purin-6-yl]-L-aspartate (13). A solution of 12 (174 mg. 0.31 mmol), dibenzyl-L-aspartate toluene-4-sulfonate (0.398 g, 0.82 mmol), and N,N-diisopropylethylamine (0.23 mL, 1.32 mmol) in DMA (5 mL) was heated at 70 °C for 36 h. Solvent was evaporated and the residue was partitioned between CHCl₃ (25 mL) and saturated NaHCO₃ (10 mL). The organic layer was dried (Na₂SO₄) and evaporated. The residue was dissolved in ethyl acetate (10 mL) and the solution was washed with 3 M H₃PO₄ (3 × 5 mL). The aqueous layer was extracted with ethyl acetate (15 mL) and the combined organic solution was washed with saturated NaHCO₃ (25 mL) and dried (Na₂SO₄). Evaporation of solvent left an oil which was purified by silica gel chromatography (1% EtOH in CHCl₃) to yield 13 (105mg, 0.147 mmol, 47%) as a clear oil: TLC (silica, CH₂Cl₂-CH₃OH, 97:3) R_f 0.34; [α]_D -23.1 (c=1.0, CHCl₃); ¹H NMR (CDCl₃, TMS) δ 8.32 (s, 1 H, H-2), 7.83 (s, 1 H, H-8), 7.35-7.2 (m, 10 H, Ph), 6.7 (bs, 1 H, NH), 5.55-5.35 (bm, 1 H, H-α), 5.15 (s, 2 H, CH₂Ph), 5.07 (s, 2 H, CH₂Ph), 5.06-5.0 (m, 1 H, H-2'), 4.8-4.7 (m, 1 H, H-1'), 4.67 (dd, J=4.4 Hz, J= 7.0 Hz, 1 H, H-3'), 3.78 (d, J=4.1 Hz, 2 H, H-5'), 3.16 (ABX, $\Delta\delta$ =0.11 ppm, J_{AB}=16.8 Hz, J_{AX} =5.3 Hz, J_{BX} =4.9 Hz, 2 H, H- β), 2.55-2.3 (m, 3 H, H-4', H-6'), 1.56 (s, 3 H, $C(CH_3)_2$), 1.31 (s, 3 H, $C(CH_3)_2$), 0.92 (s, 9 H, $SiC(CH_3)_3$), -0.08 (s, 6 H, $Si(CH_3)_2);$ ¹³C NMR (CDCI₃) δ 170.8 (<u>C</u>O₂), 170.4 (<u>C</u>O₂), 153.7 (C-6), 152.4 (C-

4), 149.8 (C-2), 139.3 (C-8), 135.4 (Ph), 135.3 (Ph), 128.5-128.1 (Ph), 120.6 (C-5), 113.4 ($\underline{C}(CH_3)_2$), 83.8 (C-2'), 80.6 (C-3'), 67.3 ($\underline{C}H_2Ph$), 66.7 ($\underline{C}H_2Ph$), 62.9 (C-5'), 61.8 (C-1'), 47.2 (C- α), 45.7 (C-4'), 36.8 (C- β), 33.4 (C- β), 27.5 ($\underline{C}(\underline{C}H_3)_2$), 25.8 (SiC($\underline{C}H_3$)₃), 25.1 (C($\underline{C}H_3$)₂), 18.2 (SiC($\underline{C}H_3$)₃), -5.5 (Si($\underline{C}H_3$)₂).

Dibenzyl-N-[9-(2',3'-O-isopropylidene-4'-hydroxymethylcyclopentyl)-9H-purin-6-yl]-L-aspartate (14). To a stirred solution of 13 (90 mg, 0.12 mmol) in THF (5 mL) was added 1 M TBAF in THF (0.16 mL, 0.16 mmol) and stirring was continued at room temperature overnight. Solvent was evaporated and the residue was purified on silica gel (4% CH₃OH in CH₂Cl₂) to afford 14 (40 mg, 0.066 mmol, 55%) as an oil: TLC (silica, $CH_2Cl_2-CH_3OH$, 95:5) R_f 0.42; $[\alpha]_D$ -27.6 (c=1.02, CHCl₃); ¹H NMR (CDCl₃, TMS) δ 8.32 (s, 1 H, H-2), 7.85 (s, 1 H, H-8), 7.3-7.2 (m, 10 H, Ph), 6.9 (bs, 1 H, NH), 5.42 (bm, 1 H, H- α), 5.15 (s, 2 H, CH_2Ph), 5.07 (s, 2 H, CH_2Ph), 5.05-4.95 (m, 1 H, H-2'), 4.8-4.7 (m, 2 H, H-1', H-3'), 3.9-3.75 (m, 2 H, H-5'), 3.15 (ABX, $\Delta\delta$ =0.07 ppm, J_{AB} =16.9 Hz, J_{AX} =5.3 Hz, J_{BX} =4.9 Hz, 2 H, H- β), 2.6-2.4 (m, 3 H, H-4', H-6'), 1.58 (s, 3 H, C(CH₃)₂), 1.31 (s, 3 H, $C(CH_3)_2$); ¹³C NMR (CDCl₃) δ 170.7 (CO₂), 170.3 (CO₂), 153.8 (C-6), 152.2 (C-4), 151.4 (C-2), 139.9 (C-8), 135.2 (Ph), 128.4-128.0 (Ph), 120.7 (C-5), 113.0 $(\underline{C}(CH_3)_2)$, 84.3 (C-2'), 82.1 (C-3'), 67.3 $(\underline{C}H_2Ph)$, 66.7 $(\underline{C}H_2Ph)$, 63.7 (C-5'), 62.9 (C-1'), 49.9 (C- α), 45.3 (C-4'), 36.7 (C- β), 33.1 (C- β), 27.6 (C(CH_3)₂), 25.0 $(C(\underline{C}H_3)_2).$

Dibenzyl-N-[9-(2',3'-O-isopropylidene-4'-(o-xylylphosphoroxymethyl)-cyclopentyl)-9H-purin-6-yl]-L-aspartate (15). A solution of 14 (40 mg, 0.066 mmol), O-xylene-N,N-diethylphosphoramidite (39 mg, 0.16 mmol), and 1H-tetrazole (13 mg, 0.18 mmol) in THF (5 mL) was stirred at 25 °C for 8 h. The solution was cooled (0 °C), *m*CPBA (55%, 136 mg, 0.43 mmol) was added, and stirring was continued for 6 h. Solvent was evaporated and the residue was dissolved in ethyl acetate (10 mL). This solution was washed with 10% Na₂S₂O₅ (5 mL), saturated NaHCO₃ (5 mL), H₂O (5 mL), and saturated NaCl (5 mL) and dried (Na₂SO₄). Evaporation of solvent left an oil which was purified on silica gel (3% CH₃OH in CH₂Cl₂) to yield 15 (44 mg, 0.056 mmol, 85%) as a clear oil: TLC (silica, CH₂Cl₂-CH₃OH, 95:5) R_f 0.50; [α]_D -12.1 (c=1.01, CHCl₃); ¹H NMR

(CDCl₃, TMS) δ 8.23 (s, 1 H, H-2), 7.83 (s, 1 H, H-8), 7.5-7.1 (m, 14 H, Ph), 6.7 (bs, 1 H, N<u>H</u>), 5.5-5.4 (bm, 1 H, H- α), 5.4-5.0 (m, 9 H, H-2', POC<u>H</u>₂Ph, overlapping 5.14 (s, C<u>H</u>₂Ph) and 5.06 (s, C<u>H</u>₂Ph)), 4.9-4.7 (m, 2 H, H-1', H-3'), 4.5-4.3 (m, 2 H, H-5'), 3.15 (ABX, Δδ=0.11 ppm, J_{AB}=17.0 Hz, J_{AX}=5.4 Hz, J_{BX}=4.5 Hz, 2 H, H- β), 2.7-2.4 (m, 3 H, H-4', H-6'), 1.56 (s, 3 H, C(C<u>H</u>₃)₂), 1.30 (s, 3 H, C(C<u>H</u>₃)₂); ¹³C NMR (CDCl₃) δ 170.7 (<u>C</u>O₂), 170.3 (<u>C</u>O₂), 153.7 (C-6), 152.2 (C-4), 151.3 (C-2), 139.6 (C-8), 135.3 (Ph), 129.4-128 (Ph), 120.7 (C-5), 113.9 (<u>C</u>(CH₃)₂), 83.3 (C-2'), 80.6 (C-3'), 68.5 (<u>C</u>H₂Ph), 68.2 (<u>C</u>H₂Ph), 68.1 (C-5'), 67.3 (<u>C</u>H₂Ph), 66.7 (<u>C</u>H₂Ph), 61.6 (C-1'), 49.8 (C- α), 44.2 (C-4'), 36.7 (C- β), 33.2 (C-6'), 27.4 (C(<u>C</u>H₃)₂), 25.1 (C(<u>C</u>H₃)₂); ³¹P NMR (CDCl₃, 85% H₃PO₄ (ext.)) δ –0.19.

C-SAMP (16). A solution of 15 (25 mg, 0.032 mmol) in CH₃OH (10 mL) and TFA (6 drops) was hydrogenated (1 atm.) over 10% Pd/C (15 mg) at 25 °C for 10 h. The suspension was filtered through Celite and solvent was evaporated to leave a residue which was dried in vacuo. The residue was dissolved in H₂O (5 mL), 1 M BaBr₂ (0.062 mL, 0.062 mmol) was added, and the pH was adjusted to pH 8.5. Addition of absolute ethanol, followed by chilling at -20 °C for 3 h, resulted in the formation of a precipitate. The precipitate was collected by centrifugation, washed with ethanol and ether, and dried in vacuo to afford C-SAMP (16) (22 mg, 0.03 mmol, 94%) as a white powder: TLC (cellulose, EtOH-H₂O-HOAc, 7:3:1) R_f 0.62; $[\alpha]_D$ -12.6 (c=0.47, H₂O); ¹H NMR (D₂O, HOD); δ 8.65 (s, 1 H, H-2), 8.48 (s, 1 H, H-8), 5.2-4.9 (m, H-2', H- α , partially obscured by HOD), 4.8-4.7 (m, 1 H, H-1'), 4.43 (dd, J=5.5 Hz, J=3.0 Hz, 1 H, H-3'), 4.2-4.0 (m, 2 H, H-5'), 3.06 (ABX, $\Delta\delta$ =0.13 ppm, J_{AB} =15.5 Hz, J_{AX} =4.2 Hz, J_{BX}=9.0 Hz, 2 H, H-β), 2.85-2.7 (m, 1 H, H-6'), 2.7-2.5 (m, 1 H, H-4'), 2.2-2.0 (m, 1 H, H-6'); 13 C NMR (D₂O, EtOH (ext.)) δ 178.9 (2 C, $\underline{CO_2}^-$), 153.9 (C-6), 152.1 (C-4), 148.3 (C-2), 140.0 (C-8), 118.8 (C-5), 75.2 (C-3'), 71.8 (C-2'), 64.9 (C-5'), 58.8 (C-1'), 53.7 $(C-\alpha)$, 44.5 (C-4'), 39.9 $(C-\beta)$, 28.5 (C-6'): ³¹P NMR (D₂O, 85% H₃PO₄ (ext.)) δ 7.23; MS (ion spray) MH⁺-Ba 595.5, calcd. for C₁₅H₁₆O₁₀N₅PBa, 594.5.

Acknowledgment. We are very grateful to the National Institutes of Health (RO1 GM 46243) for support of this investigation. Dr. Robert Vince, University of Minnesota, is gratefully acknowledged for his assistance in obtaining the ion spray MS. P. Chattopadhyay's assistance with some of the synthetic procedures is also acknowledged.

REFERENCES AND NOTES

- 1. Abbreviations used: ASL, adenylosuccinate lyase; AICAR, amino-imidazole carboxamide ribonucleotide; BSA, bovine serum albumin; C-AICAR, carbocyclic aminoimidazole carboxamide ribonucleotide; CF₃-HOBT, 6-trifluoromethyl-1-hydroxybenzotriazole; mCPBA, meta-chloroperbenzoic acid; DEAD, diethyl azodicarboxylate; DCC, dicyclohexyl-carbodiimide; ddATP, 2',3'-dideoxyadenosine triphosphate; ddl, 2',3'-dideoxyinosine; DMA, dimethylacetamide; GAICAR, glutaroamino-imidazole carboxamide ribonucleotide; C-GAICAR, carbocyclic glutaroaminoimidazole carboxamide ribonucleotide; SAICAR, succinoamino-imidazole carboxamide ribonucleotide; C-SAICAR, carbocyclic succinoamino imidazole carboxamide ribonucleotide; TBAF, tetrabutylammonium fluoride; TFA, trifluoroacetic acid; THF, tetrahydrofuran; TLC, thin layer chromatography; TMS, tetramethylsilane.
- 2. Stone, R. L.; Zalkin, H.; Dixon, J.E. *J. Biol. Chem.* **1993**, *268*, 19710-19716.
- 3. Jaeken, J.; Van den Berghe, G. *Lancet* **1984**, *ii*, 1058-1061.
- Jaeken, J.; Wadman, S.K.; Duran, M.; van Sprang, F. J.; Beemer, F. A.;
 Holl, R. A.; Theunissen, P. M.; de Cock, P.; Van den Bergh, F.; Van den Berghe, G. Eur. J. Pediatr. 1988, 148, 126-131.
- 5. Jaeken, J.; Van den Bergh, F.; Vincent, M. F.; Casaer, P.; Van den Berghe, G. *J. Inherited Metab. Dis.* **1992**, *15*, 416-418.
- 6. Barshop, B. A.; Alberts, A.; Gruber, H. *Biochim. Biophys. Acta* **1989**, 999, 19-23.

- 7. Van den Bergh, F.; Vincent, M. F.; Jaeken, J.; Van den Berghe, G. *Adv. Exp. Med. Biol.* **1991**, *309B*, 277-280.
- 8. Nair, V.; Sells, T. B. Biochim. Biophys. Acta 1992, 1119, 201-204.
- 9. Caperelli, C. A.; Price, M. F. Arch. Biochem. Biophys. 1988, 264, 340-342.
- 10. Liu, D.; Caperelli, C. A. J. Biol. Chem. 1991, 266, 16699-16702.
- 11. Caperelli, C. A.; Liu, D. J. Biol. Chem. 1992, 267, 9783-9787.
- Antle, V. D.; Liu, D.; McKellar, B. R.; Caperelli, C. A.; Hua, M.; Vince, R. J. Biol. Chem. 1996, 271, 6045-6049.
- 13. Antle, V. D.; Liu, D.; McKellar, B. R.; Caperelli, C. A.; Hua, M.; Vince, R. *J. Biol.* **1996**, *271*, 0000-0000.
- 14. Schmitt, L.; Caperelli, C. A. Nucleos. Nucleot. 1995, 14, 1929-1945.
- 15. Cusack, N. J.; Shaw, G. J. Chem. Soc. Chem. Commun. 1970, 1114.
- 16. Konig, W.; Geiger, R. Chem. Ber. 1970, 103, 788-798.
- Kozikowski, A. P.; Ognyanov, V. I.; Fauq, A. H.; Nahorski, S. R.; Wilcox,
 R. A. J. Am. Chem. Soc. 1993, 115, 4429-4434.
- 18. Firestine, S. M.; Davisson, V. J. *Biochemistry* **1994**, *33*, 11917-11926.
- Agrofoglio, L.; Suhas, E.; Farese, A.; Condom, R.; Challand, S. R.; Earl,
 R. A.; Guedj, R. *Tetrahedron*, 1994, 50, 10611-10670, and references cited therein.
- 20. Bonnal, C.; Chavis, C.; Lucas, M. *J. Chem. Soc. Perkin Trans.* 1, **1994**, 1401-1410.
- Parry, R. J.; Haridas, K.; De Jong, R.; Johnson, C. R. *Tetrahedron Lett.* 1990, 31, 7549-7552.
- Siddiqi, S. M.; Schneller, S. W.; Ikeda, S.; Snoeck, R.; Andrei, G.;
 Balzarini, J.; De Clercq, E. Nucleos. Nucleot. 1993, 12, 185-198.
- 23. Watanabe, Y.; Komoda, Y.; Ebisuya, K.; Ozaki, S. *Tetrahedron Lett.* **1990**, *31*, 255-256.
- 24. Cardini, C. E.; Leloir, L. F. *Methods Enzymol.* **1957**, *3*, 835-840.
- 25. Shealy, Y. F.; Clayton, J. D. J. Pharm. Sci. 1973, 62, 1252-1257.
- Buck, I. M.; Reese, C. B. J. Chem. Soc. Perkin Trans. 1 1990, 2937-2942.

- 27. Casey, P. J.; Lowenstein, J. M. Biochem. Pharmacol. 1987, 36, 705-709.
- 28. Ames, B.N.; Dubin, D.T. J. Biol. Chem. 1960, 235, 769-775.
- 29. Perrin, D.D.; Armarego, W. L. F. *Purification of Laboratory Chemicals* **1988**, 3rd edition, Pergamon Press, New York.
- 30. Cleland, W. W. Methods Enzymol. 1979, 63, 103-138.

Received March 12, 1996 Accepted September 24, 1996